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The Model of Decomposition of Wood Fiber by Fungi

Abstract

As a member of the decomposition process, fungi play an important role in the carbon
cycle. To investigate the decomposition of wood fiber by fungi, scientists have carried out a lot
of experiments, proposed a variety of models and made some achievements. Based on partially
published data, this paper constructs a series of models to explore fungal inter specific interactions
and fungal decomposition.

Model I: The Decomposition of Wood Fiber. This is the backbone of this paper. We believe
that in a given environment, the decomposition capacity of the system is related to the number
and the decomposition rate of various fungi. Based on this, we establish a simple and powerful
differential equation to describe the decomposition of ground litter by fungi. And on this basis, we
study the characteristics, interactions and quantity of fungi.

Model II: Trait of Fungi. Based on some available data, we found that there is a strong
relationship between the decomposition rate of wood fiber by various groups of fungi and their
growth rates (usually described as hyphal extension rate) and moisture tolerance. Using the idea
of multiple regression, we established the relationship between the decomposition rate of fungi,
the hyphal extension rate and the moisture tolerance, and roughly described the change of the
decomposition rate of different types of fungi. Next, in order to describe different population
combinations, we use the Monte Carlo method to randomly generate populations or combinations
of populations in order to study it.

Model III: Fungal Interaction and Population. This is the main part of this paper. In this
study, we first simulate the competition among populations by using a two-dimensional random
cellular automata model, and studied the interactions of 3, 4 and 5 fungi. At the same time, we
also establish a multivariate Gause-Lotka-Volterra model to describe the change of the equivalent
number of multiple fungal populations. After many times of simulation, the quantity change
relationship of different population combinations is obtained.

Model IV: Environmental Impact. We consider the influence of environmental factors
(mainly temperature and humidity). Based on the existing data, the "environmental impact factor"
is evaluated through the grey correlation analysis method, and the revised decomposition model is
obtained. With the help of this model, we also obtain the maximum growth rate and decomposition
rate of the fungal population under different climatic conditions.

Finally, we established the final model of fungal decomposition of wood fiber. On the one
hand, we adjusted the number of fungi through the quantitative model. And on the other hand, we
adjusted the growth rate and decomposition rate of fungi through the environmental model. We
can analyze the impact of environmental change on the system and the significance of biodiversity.
At last, we conducted stability analysis on our model the results are reliable.

Keywords: Fungi; Random Celluar Automata; Computer Simulation
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1 Introduction

1.1 Problem Background

The carbon cycle plays an important role for the creatures on earth. And one of the crucial part of
the carbon cycle is the decomposition of plant material and woody fibers, whose promoters are usually
decomposers in ecosystems. The decomposition of wood by fungi is an important research object in
this paper.

Figure 1: Scientist holding a dish of microbial

Recently, some researchers studied 34 kinds of different fungi from Armillaria gallica to Xylobolus
subpileatus, and have discovered that some characteristics of fungi determine the rate at which they
decompose wood. Meanwhile the relationship between these characteristics has been pointed out. The
researchers also found that strains of some fungi tend to grow better under changes in humidity and
temperature. Among them, the most remarkable characteristic of all kinds of fungi is growth rate
(which is usually described by hyphal extension rate) and moisture tolerance.

What we are interested in is how fungi decompose wood in the ecosystem. At the same time,
we also want to know how different fungal populations interact with each other. Finally, we also want
to know how fungi compete and decompose wood in different environments and conditions. Therefore,
we set up several different mathematical models to describe and predict this process.

1.2 Restatement of the Problem

• Set up the decomposition model of woody fibers in the presence of various fungi;

• In the above model, consider the interaction between different kinds of fungi. Before this, we
need to study the characteristics of single fungus (including growth rate and moisture tolerance)
and include them in the previous model;

• Analysis the established model, and describe the interaction between different fungi. In order to
study the dynamic characteristics of the interaction, it is necessary to describe its short-term and
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long-term trends. At the same time, our analysis should include the impact of rapid fluctuations
in the environment, and combined with the trend of atmospheric change to assess the impact of
changes in the local weather patterns;

• Consider the relative advantages and disadvantages of each species and different species com-
binations in the model, as well as different environments, including arid, semi-arid, temperate,
arboreal and tropical rainforest, in order to analyze the situation of different environments;

• Describe how the diversity of fungal species affects the efficiency of a system in decomposing
wood according to the model. The significance of biodiversity is explained when considering
the changes of local environment.

1.3 Our Approach

In order to solve the problem, our main work is as follows.
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Figure 2: The model of fungal decomposition of wood fiber

• Set up the decomposition model of wood fiber;

• Found the relationship between growth rate, moisture tolerance and decomposition rate based on
the trait data of various fungi;

• Set up the interaction models between different fungi;

• Set up the numerical model of fungal population combined with the previous interaction model;
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• Analysis the influence of environmental change on fungi combined with the influence of different
types of weather and climate;

• Analyzed and explained the significance of biodiversity combined with our model.

2 General Assumptions

To simplify the problem, we make the following basic assumptions, each of which is properly
justified.

• Assumption 1: The total decomposition rate of wood is related to the equivalent number and
the decomposition rate of different microorganisms and is the weighted average of them;

Reasons: Different species of fungi have their corresponding decomposition rate of wood, which
is an important characteristic of fungi themselves. In order to describe the decomposition ability
of all kinds of fungi, we assume that there is an equivalent number of different kinds of fungi.

• Assumption 2: A single kind of fungus can be identified by using its growth rate and moisture
resistance;

Reasons: Under certain conditions, different fungi correspond to a set of specific growth rates
and moisture tolerance, which are the main factors affecting the decomposition rate of fungi. This
paper mainly explores the decomposition of wood by fungi as a decomposing agent. Without
loss of rationality, we believe that fungi are uniquely determined by its growth rate and moisture
tolerance.

• Assumption 3: Different species of fungi use the same proportion of energy derived from the
environment;

Reasons: This is a commonly used assumption in ecology, so that each population has a certain
limit (known as environmental capacity) in the case of limited environmental resources. From
this, a Gause-Lotka-Volterra model can be established to predict population changes.

• Assumption 4: Changes in the environment are mainly reflected in changes in temperature and
humidity.

Reasons: The two most important parameters in the environment are temperature and humidity.
Temperature indicates the intensity of molecular thermal movement in the environment, and also
affects fungi directly or indirectly by affecting enzyme activity and so. Humidity represents the
amount of water vapor in the environment, and different fungi have different water tolerances,
which makes it important to consider humidity.
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3 Model Preparation

3.1 Notations

Table 1: Notations

Symbol Description Unit
𝑆 Total amount of wood in the environment. g
𝛿 Wood decomposition rate. %
𝛼 Hyphal extension rate, which is used to describe growth rate. mm · day−1

𝛽 Moisture tolerance. %
𝑁 Equivalent quantity. -
𝑇 Temperature ◦C
𝑀 Humidity %

3.2 Data Preprocessing

Here, set wood decomposition rate as 𝛿, hyphal extension rate as 𝛼 and moisture tolerance as 𝛽.
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Moisture tolerance

0

0.5

1

1.5

2

2.5

3

3.5

4

lo
g

(D
e

c
o

m
p

o
s
it
io

n
 r

a
te

)

(b) The relationship between 𝛽 and ln 𝛿

Figure 3: The relationship between the traits of fungi

According to the data attached in Reference [1], we can get the wood decomposition rate and
hyphal extension rate of 34 different isolates. Therefore, the relationship between hyphal extension rate
and wood decomposition rate under different temperatures is obtained, as shown in the Figure 3(a).

Then according to the attached data in Reference [2], the moisture tolerance of 34 isolates can be
obtained. Thus, the relationship between decomposition rate and moisture tolerance can be obtained
and shown in the Figure 3(b).
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Figure 4: The relationship between ln 𝛼 and 𝛽

According to the above data, 34 different fungi have their own traits. Meanwhile, according to
Reference [1], it can be found that ln 𝛿 and ln 𝛼, ln 𝛿 and 𝛽 have certain linear relationship. At the same
time, because of the above linear relationship, we can also get that ln 𝛼 and 𝛽 have a linear relationship,
as shown in the Figure 4.

The relationship between ln 𝛼 and 𝛽 is obtained by

ln 𝛼 = 2.0517𝛽 − 0.3459±0.6239.

Therefore, it is considered that growth rate 𝛼 and moisture tolerance 𝛽 are also related. In this paper,
growth rate 𝛼 and moisture tolerance 𝛽 satisfy the above relationship for any possible fungal population.

4 Model Building

4.1 Decomposition of Wood Fiber

Our first and the final goal is to model the decomposition of wood fiber.
Let’s set the total decomposition rate of wood as 𝛿, which represents the proportion of dry weight

of wood mass loss in 122 days, so that the wood mass loss in each amount of time of d𝑡 that each fungus
contributes is 𝛿𝑆d𝑡. Then, if the total amount of wood fiber in the soil is 𝑆 and the numbers of fungi is
𝑁 , the differential equation can be listed as

d𝑆
d𝑡

= −𝛿𝑁𝑆. (1)

Equation (1) describes the variation rule of the total amount of wood fiber 𝑆 with time 𝑡. If 𝛿 and 𝑁 is
considered to be a constant with time 𝑡, then start from the time of 0 and solve the differential equation
(1), we have

𝑆(𝑡) = 𝑆0 exp(−𝛿𝑁𝑡),
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Where 𝑆0 represents the initial weight of wood fiber.
In the soil, there are many kinds of fungi. We assume that the total decomposition rate of wood

is related to the equivalent number of different fungi. As time changes, the equivalent number of
different microbial also changes. So 𝛿 is not a constant number over time 𝑡. And it is clear that 𝑁 is
also changing over time.

Suppose there are 𝑛 kinds of species of fungi. For 1 ≤ 𝑖 ≤ 𝑛, the equivalent number of each kind
of fungi is 𝑁𝑖 (𝑡), and the corresponding decomposition rate of wood is 𝛿𝑖, then the total decomposition
rate is

𝛿(𝑡) =
𝑛∑
𝑖=1

𝑁𝑖 (𝑡)𝛿𝑖 .

Solve the differential equation (1), we have

𝑆(𝑡) = 𝑆0 exp
(
−

∫ 𝑡

0
𝛿(𝑠)d𝑠

)
= 𝑆0 exp

(
−

∫ 𝑡

0

𝑛∑
𝑖=1

𝑁𝑖 (𝑠)𝛿𝑖d𝑠
)
. (2)

Equation (2) is a preliminary mathematical model, which we used to describe the breakdown of wood
fibers under the action of different fungi.

4.2 Trait of Fungi

In Reference [1], we already know that ln 𝛿 and ln 𝛼, along with ln 𝛿 and 𝛽 have some linear
relationships. And in the process of modeling, in order to better explore the relationship between
decomposition rate, growth rate and moisture tolerance, we further assume that ln 𝛿 should meet a
linear relationship with ln 𝛼 and 𝛽, i.e

ln 𝛿 = 𝑝 ln 𝛼 + 𝑞𝛽 + 𝑟 + 𝜀.

In the equation, 𝑝, 𝑞 and 𝑟 are constants unrelated to 𝛿, 𝛼 and 𝛽. And 𝜀 is an error, which changes with
the value of 𝛿, 𝛼 and 𝛽. For the data set of independent observations (𝛿𝑖, 𝛼𝑖, 𝛽𝑖)(1 ≤ 𝑖 ≤ 𝑛), let

A =

©«
ln 𝛼1 𝛽1 1
ln 𝛼2 𝛽2 1
...

...
...

ln 𝛼𝑛 𝛽𝑛 1

ª®®®®®¬
,β =

©«
𝑝

𝑞

𝑟

ª®®¬ ,β =

©«
ln 𝛿1

ln 𝛿2
...

ln 𝛿𝑛

ª®®®®®¬
.

To make the model as close as possible to the true value, using the idea of least square method, the
error

𝑒 =
𝑛∑
𝑖=1

𝜀2 =
𝑛∑
𝑖=1

(ln 𝛿𝑖 − 𝑝 ln 𝛼𝑖 − 𝑞𝛽𝑖 − 𝑟)2
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should be kept as small as possible. Let

𝜕𝑒

𝜕𝑝
= −2

𝑛∑
𝑖=1

(ln 𝛿𝑖 − 𝑝 ln 𝛼𝑖 − 𝑞𝛽𝑖 − 𝑟) ln 𝛼𝑖 = 0

𝜕𝑒

𝜕𝑞
= −2

𝑛∑
𝑖=1

(ln 𝛿𝑖 − 𝑝 ln 𝛼𝑖 − 𝑞𝛽𝑖 − 𝑟)𝛽𝑖 = 0

𝜕𝑒

𝜕𝑟
= −2

𝑛∑
𝑖=1

(ln 𝛿𝑖 − 𝑝 ln 𝛼𝑖 − 𝑞𝛽𝑖 − 𝑟) = 0

,

and thus we have
A𝑇Aβ = A𝑇γ .

Finally, we get the coefficients of the model

β̂ =
©«
𝑝

𝑞

𝑟

ª®®¬ = (A𝑇A)−1A𝑇γ =
©«
0.3604
0.2468
1.8332

ª®®¬ .
Hence the growth rate, moisture tolerance and decomposition rate satisfy the Equation (3)

ln 𝛿 = 0.3604 ln 𝛼 + 0.2468𝛽 + 1.8332. (3)

Based on the Equation (3) above, we have

𝛿 = 6.2538 · 𝛼0.3604 · e0.2468𝛽.

Thus we have a description of the characteristics of all the classes of fungi, as Figure 5 shows.

Figure 5: The relationship between the traits of fungi
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4.3 Random Celluar Automata

Next, we use the computer to simulate, and try to use the model similar to the standard cellular
automata to simulate the evolution of population size visually based on time series.

input: Amount,natural growth rate and adaptive index of species
output: Time-dependent curve of group sizes;Quantity graph
Allocates memory space for variables and initializes them
if Start button is pressed then

Calculate the individual increment of each population under ideal conditions
Generat new individuals of each population and the intraspecific competition
for Every point in space do

Calculate whether there are more than two species of individuals at the point
if There are more than two species then

Generate adaptive parameters for each population at this point
Find the corresponding population with the largest adaptive parameter
Other populations are judged to have failed in the competition,only the newly
screened populations exist at this point

end
end

end
Calculate the size of all the populations in the graph
Reflect the existence of various groups at each point onto the graph
return Quantity graph and real-time data of various groups
Stores real-time data from each loop
if Pause key is pressed then

Reset the pause and run keys
Pause the operation of the loop
return Time-dependent curve of various group sizes

end
The basic principle of this computer simulation is similar to that of standard cellular automata, but

the core of its control rules is based on probability control of uniformly distributed random numbers,
rather than an iterative structure controlled by a single cell and its surrounding environment.

The core of this algorithm includes three parts: reproduction, intraspecific competition and
interspecific competition. Reproduction and intraspecific competition are controlled by the same
code, and the probability control and growth model are consistent with the traditional Logistic growth
model. Interspecific competition was controlled by a random parameter set, and the dominant species
at the same locus were determined by comparing the adaptability indices of different species at the
same locus. In the program, this index is represented as the product of the adaptive parameter, the
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existence parameter and the random parameter. We point out that the random parameters in this code
are controlled by both the random factors and the properties of the species themselves, namely the
adaptive parameters and the self-growth parameters. The theoretical structure and experimental results
of this model are consistent with the general cognitive law.

This model still has some limitations. First of all, it can not give the time-dependent variation
law of the spatial distribution of the population, but only give the approximate succession picture of
the population size. Secondly, this model is established on the premise that the population’s heredity
is stable and there is basically no large-scale heredity and variation. More sophisticated algorithms,
such as standard cellular automata modified by genetic algorithms, may be needed to provide a more
detailed description of the spatially varying picture of population.

4.4 Gause-Lotka-Volterra Model

In the following process of model establishment, we believe that the interaction between pop-
ulations and the change of environment will directly affect the equivalent number of fungi 𝑁𝑖, thus
affecting the decomposition rate of wood fiber 𝛿.

In order to describe the interaction relationship between different populations and reflect the
competition among populations, we established the extended Gause-Lotka-Volterra model, namely the
differential equations 

d𝑁1
d𝑡

=
𝛼1𝑁1
𝐾1

(𝐾1 − 𝜎11𝑁1 − 𝜎12𝑁2 − · · · − 𝜎1𝑛𝑁𝑛)

d𝑁2
d𝑡

=
𝛼2𝑁2
𝐾2

(𝐾2 − 𝜎21𝑁1 − 𝜎22𝑁2 − · · · − 𝜎2𝑛𝑁𝑛)
...

d𝑁𝑛
d𝑡

=
𝛼𝑛𝑁𝑛
𝐾𝑛

(𝐾𝑛 − 𝜎𝑛1𝑁1 − 𝜎𝑛2𝑁2 − · · · − 𝜎𝑛𝑛𝑁𝑛)

,

where 𝐾𝑖 represents the environmental capacity when there is only one species. To obtain the environ-
mental capacity of a single population, we consider that the energy obtained by a population from the
environment is all used for the growth of the population, so as to approximately consider 𝐾𝑖 ≈

𝛼𝑖𝑆

𝛿𝑖
. In

order to simplify the problem and calculate in MATLAB, set

D =

©«
𝜎11 𝜎12 · · · 𝜎1𝑛

𝜎21 𝜎22 · · · 𝜎2𝑛
...

...
. . .

...

𝜎𝑛1 𝜎𝑛2 · · · 𝜎𝑛𝑛

ª®®®®®¬
,N =

©«
𝑁1

𝑁2
...

𝑁𝑛

ª®®®®®¬
,α =

©«
𝛼1

𝛼2
...

𝛼𝑛

ª®®®®®¬
,β =

©«
𝛿1

𝛿2
...

𝛿𝑛

ª®®®®®¬
,
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where 𝜎𝑖 𝑗 =
𝛿 𝑗

𝛿𝑖
represents the intensity of competition between two species. We have



d𝑁1
d𝑡

=
𝑁1
𝑆
(𝛼1𝑆 − 𝛿1𝑁1 − 𝛿2𝑁2 − · · · − 𝛿𝑛𝑁𝑛)

d𝑁2
d𝑡

=
𝑁2
𝑆
(𝛼2𝑆 − 𝛿1𝑁1 − 𝛿2𝑁2 − · · · − 𝛿𝑛𝑁𝑛)

...

d𝑁𝑛
d𝑡

=
𝑁𝑛
𝑆
(𝛼𝑛𝑆 − 𝛿1𝑁1 − 𝛿2𝑁2 − · · · − 𝛿𝑛𝑁𝑛)

. (4)

Give a set of initial values, and we can simulate the quantity change of multiple populations by equation
(4). Last, considering the overall decomposition rate of these fungal components

𝛿 =
𝑛∑
𝑖=1

𝑁𝑖 (𝑡)𝛿𝑖 .

Thus, the decomposition rate of different systems can be estimated.

4.5 Grey Relational Analysis of Environmental Impact

We assume that the change of environmental humidity mainly affects the system by changing the
growth rate of a certain population. Suppose the ambient temperature is 𝑇 , humidity is 𝑀 , and the
optimal temperature and the humidity is 𝑇0 and 𝑀0. Let some index of the environment is 𝐷, and the
change of 𝐷 is Δ𝐷.

According to the definition, 𝛽𝑖 is a number in [−1, 1]. It is also noted that if 𝛽𝑖 is larger, the
species is more tolerant to environmental change. Therefore, let 𝛽′𝑖 =

𝛽𝑖 + 1
2

. Then the larger 𝛽′𝑖 is,
the stronger tolerance of the species to environmental change is. If 𝛼 is reduced to half of its original
value, the proportion of the amount changed is

Δ𝐷
𝐷

≈
𝛽′𝑖
2

=
𝛽𝑖 + 1

4
.

On the basis of that, we have
ln 𝛼′𝑖 − ln 𝛼𝑖 = ln 1

2
= 𝑘

Δ𝐷
𝐷
,

hence 𝑘 =
−4 ln 2
𝛽𝑖 + 1

. So there is a variation relationship between growth rates and environmental change

ln 𝛼′𝑖 = ln 𝛼𝑖 −
4 ln 2
𝛽𝑖 + 1

· |Δ𝐷 |
𝐷

.

To explore the effects of the environment on fungal decomposition, there are some relevant data.
During the data processing, we were surprised finding that changes in hyphal extension rate 𝛼 was
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associated with humidity 𝑀 and temperature 𝑇 . In order to quantify the strength of the impact of both
on hyphal extension rate, we processed the relevant data using a gray relational analysis model. We
analyzes the correlation between different indicators and hyphal extension rate.

Taking the hyphal extension rate as the reference series, the results are obtained as

{𝑎(𝑖) : 1 ≤ 𝑖 ≤ 𝑛}.

Taking the indicators (temperature & humidity) of environment as comparison series, we get

{𝑥𝑚 (𝑖) : 1 ≤ 𝑖 ≤ 𝑛}, 𝑚 = 1, 2,

where we substitute {𝑥1(𝑖)} for temperature and substitute {𝑥2(𝑖)} for humidity.
Considering the different dimensions of the two indicators. Before comparison, they should be

initialized to
{𝑦𝑚 (𝑖), 1 ≤ 𝑖 ≤ 𝑛} =

{
1, 𝑥𝑚 (2)
𝑥𝑚 (1)

,
𝑥𝑚 (3)
𝑥𝑚 (1)

, · · · , 𝑥𝑚 (𝑛)
𝑥𝑚 (1)

}
.

Here for 1 ≤ 𝑖 ≤ 𝑛 and for a specific species, the correlation coefficient of the comparison sequence to
the reference sequence is obtained as

𝜉𝑘,𝑚 (𝑡) =
min𝑘 min𝑖 |𝑎𝑘 (𝑖) − 𝑦𝑚 (𝑖) | + 𝜌max𝑘 max𝑖 |𝑎𝑘 (𝑖) − 𝑦𝑚 (𝑖) |

|𝑎𝑘 (𝑡) − 𝑦𝑚 (𝑡) | + 𝜌max𝑘 max𝑖 |𝑎𝑘 (𝑖) − 𝑦𝑚 (𝑖) |
.

In the formula, 𝜌 represents the correlation coefficient and put 𝜌 = 0.5 here.
Next, we can calculate the indicator

𝑟 (0)𝑘,𝑚 =
1
𝑛

𝑛∑
𝑡=1

𝜉𝑘,𝑚 (𝑡).

In order to illustrate the impact of each indicator more reasonably, normalization is required. That is

𝑟𝑘,𝑚 = 𝑟 (0)𝑘,𝑚/
2∑

𝑚=1
𝑟 (0)𝑘,𝑚 .

After calculating the results, we have

Δ𝐷
𝐷

= 0.5138 · |𝑇 − 𝑇0 |
𝑇

+ 0.4862 · |𝑀 − 𝑀0 |
𝑀

.

Combining the above conclusions, we get the correlation

ln 𝛼′ = ln 𝛼 − 4 ln 2
𝛽 + 1

·
(
0.5138 · |𝑇 − 𝑇0 |

𝑇
+ 0.4862 · |𝑀 − 𝑀0 |

𝑀

)
. (5)

Thus, by grey prediction model, we have successfully established the influence model of environmental
temperature 𝑇 and humidity 𝑀 on the growth rate 𝛼.
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4.6 The Final Decomposition Model

In order to obtain the final decomposition model of wood fiber, we considered the organic
integration of the above model. Let the ideal temperature of fungus be 𝑇0, ideal humidity be 𝑀0, and
there is a piece of soil whose temperature and humidity are 𝑇 and 𝑀 . The initial total quantity of wood
fiber in the soil is 𝑆0. After a period of time 𝑡, the quantity of wood at any moment is 𝑆(𝑡). There is
a total population of 𝑛 species of fungi in the environment, where the growth rate is 𝛼𝑖, the moisture
tolerance is 𝛽𝑖, and the decomposition rate of wood is 𝛿𝑖. The equation can be listed as

𝑆(𝑡) = 𝑆0 exp
(
−

∫ 𝑡

0

𝑛∑
𝑘=1

𝑁𝑘 (𝑠)𝛿𝑘d𝑠
)

d𝑁𝑖
d𝑡

=
𝑁𝑖
𝑆0

(
𝛼′𝑖𝑆0 −

𝑛∑
𝑘=1

𝛿𝑘𝑁𝑘

)
ln 𝛼′𝑖 = ln 𝛼𝑖 −

4 ln 2
𝛽𝑖 + 1

·
(
0.5138 · |𝑇 − 𝑇0 |

𝑇
+ 0.4862 · |𝑀 − 𝑀0 |

𝑀

)
ln 𝛿𝑖 = 0.3604 ln 𝛼′𝑖 + 0.2468𝛽𝑖 + 1.8332

. (6)

In addition, if we need to study the interaction of fungi on the plane, we can use the two-dimensional
random cellular automata model established by us, and use the computer to simulate.

This is the final model of fungal decomposition of wood fiber that we established, according to
the requirements of the topic.

5 Results of the Model

5.1 Geometric Prediction of Interactions

Several mathematical simulations have been carried out for interspecific competition patterns in
a limited space with only 3, 4 and 5 populations under different parameters. In the following, we
presents three visualizations of population size and three visualizations of time-dependent evolution of
population size.

We can see that these results are consistent with the general cognitive law and meet the our
expectation. The corresponding parameters of these patterns are noted in Figure 6.

It is noted that this algorithm is still bionic and time-varying in nature, so the computational
amount is much larger than that of the traditional differential equation model, and the computational
efficiency is low. At the same time, the statistical fluctuation will also have an impact on this simulation.
Therefore, when predicting short-term and long-term trends, the Gause-Lotka-Volterra model is mainly
used for calculation, and this algorithm is used for pseudo-true verification.
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Figure 6: Results of random celluar automata. The parameter of species used in the simu-
lation are: selfrate=[0.28,0.35,0.42]; condirate=[0.41;0.35;0.29]; selfrate=[0.2,0.3,0.4,0.5]; condi-
rate=[0.6;0.5;0.4;0.3]; selfrate=[0.15,0.25,0.33,0.45,0.58]; condirate=[0.967;0.7;0.58;0.478;0.428];
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5.2 Short Term and Long Term Trends

For the 34 species of fungi given in the Reference [1], the results obtained under ideal temperature
and humidity are shown in Figure 7. The figure 7(a) below shows the results in the short term. It can
be seen that some species have no competitive advantage in the short term, while some species have
certain growth. Meanwhile, Figure 7(b) shows the long-term results, with only one competitive fungus
growing over a long period of time, which fits our intuition.
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(a) Short term trend
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(b) Long term trend

Figure 7: Results of Gause-Lotka-Volterra model

The ultimate winner, according to the predictions, was a fungus called Phlebiopsis flavidoalba
FP150451 A8G. And after many simulations here, we get that the total population with a higher growth
rate 𝛼 will have a greater final competitive advantage, which is in line with the ecological reality.

5.3 Situation in Different Environments

Based on the model we have established, we can plot the relationship between the maximum
decomposition rate and temperature and humidity, as figure 8(a) shows.

Among them, there is a certain temperature and humidity, so that the decomposition rate reaches
the maximum, which is consistent with reality. Next, to analyze the effects of environmental change,
we calculate the modulus of the gradient

|grad𝛿 | =

√(
𝜕𝛿

𝜕𝑀

)2
+

(
𝜕𝛿

𝜕𝑇

)2

and take it as the impact of environmental changes. The calculated results are shown in figure 8(b). It
can be seen from the image that the system is less sensitive to environmental changes near the point
where the decomposition rate reaches the maximum. The further away from the maximum point, the
more sensitive the system is to environmental changes.
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(a) The decomposition rate (b) The gradient

Figure 8: Results of grey relational analysis model

Finally, according to the type of environment given in the question, we can infer its representative
temperature and representative humidity.The calculated results are shown in table ??.

Table 2: The situation in different environments

Type Temperature Humidity Growth rate Decomposition rate
arid 30 0% 4.6753 13.9551
semi-arid 30 20% 5.9738 15.2438
temperate 30 50% 8.6282 17.4035
temperate 20 50% 8.2202 17.1024
arboreal 30 70% 7.6330 16.6516
arboreal 20 70% 7.2721 16.3635
tropical rain forests 30 90% 5.9738 15.2438

In Table 2, we can see that fungus growth is higher in temperate, and the corresponding decom-
position rate is higher, which is in line with reality.

5.4 The Significance of Biodiversity

First, let’s analyze the change of decomposition rate caused by the increase of species number.
In the population number prediction model, we try to change the value of species number 𝑛 in order to
reflect the influence of species number change on the system. Set the same initial value 𝑁𝑖 (0) =

10
𝑛

,
and take the total amount of environmental resources 𝑆 = 1000 to calculate the corresponding total
decomposition rate when 𝑡 = 2. Calculate 1000 times and take the average value of the calculated
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results. After processing enough data and plotting the total decomposition rate and 𝑛, we can get a
monotonically increasing and downward convex curve, as figure 9 shows.
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Figure 9: The change of decomposition rate caused by the increase of species number

The monotony indicates that, as the value of 𝑛 keeps increasing, the total decomposition rate of the
system keeps increasing; The concavity and convexity of the curve indicates that, with the increasing
value of 𝑛, the growth range of the curve is also decreasing. There is a certain marginal diminishing
effect, which is in line with the reality.

Second, we analyze the ability of a system to resist risk as it becomes more diverse. According
to the above model, as the number of biological species 𝑛 continues to grow, our system will become
more complex, with more fungal species whose growth rates 𝛼 and moisture tolerance 𝛽 vary. Thus,
there are some fungi, which have a higher growth rate and a certain competitive advantage, and thus
increase in number. After sudden changes in the environment, even if the mortality rate increases, they
will still retain a certain number.

To sum up, we can conclude that biodiversity is of great significance to the system.

6 Conclusion of the Model

6.1 Summary

To solve the first problem, we established the decomposition model of wood fiber, namely the
differential equation

𝑆(𝑡) = 𝑆0 exp
(
−

∫ 𝑡

0

𝑛∑
𝑖=1

𝑁𝑖 (𝑠)𝛿𝑖d𝑠
)
.

In this model, how wood fibers decompose in the presence of multiple fungi is described.
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To solve the second problem, we first obtained the characteristics of the individual fungi, and we
find the linear relationship

ln 𝛿 = 0.3604 ln 𝛼 + 0.2468𝛽 + 1.8332.

Next, in order to describe the interaction, we simplified the standard cellular automata model and
established a two-dimensional stochastic cellular automata model.

To solve the third problem, We first set up the quantity prediction model of the population, that
is, the differential equations

d𝑁𝑖
d𝑡

=
𝑁𝑖
𝑆
(𝛼𝑖𝑆 − 𝛿1𝑁1 − 𝛿2𝑁2 − · · · − 𝛿𝑛𝑁𝑛), 1 ≤ 𝑖 ≤ 𝑛.

The number trend of many different populations can be predicted clearly and efficiently according to
this model. And in order to quantitatively analyze the environmental impact, we establish a growth
rate adjustment model

ln 𝛼′ = ln 𝛼 − 4 ln 2
𝛽 + 1

·
(
0.5138 |𝑇 − 𝑇0 |

𝑇
+ 0.4862 |𝑀 − 𝑀0 |

𝑀

)
.

To solve the fourth problem, we associate it with Monte Carlo method and randomly select
𝑛groups of (𝛼, 𝛽) to reflect different population combinations and analyze the corresponding situation.
And we use our models in different climates.

To solve the fifth problem, we combined existing models. In order to illustrate the importance of
biodiversity, we first analyze how biodiversity affects the efficiency of a system in decomposing wood.
The second is to consider the importance of biodiversity when the local environment changes.

In conclusion, we successfully builded the decomposition model of wood fiber, and used it to
solve the practical problem.

6.2 Stability Analysis

Consider the variety of fungi in the process of model establishment. We can simulate the
combination of possible fungal populations by random number. Statistically, when the number of
simulations is sufficient, the simulation results would be normal distribution. We consider the stability
of the simulation results, and here let 𝑒 be an error and satisfy

𝛿 = 𝛿 ∓ 𝑒.

In figure 10, the blue line represents the average of the simulation results, and the red area represents the
changing range of 𝛿. As you can see, when the population is large enough, the results is going stable,
which is consistent with our perception. This indicates that our model can handles population
interactions with reliable results.
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Figure 10: The simulation results

6.3 Strength

In the process of building the model, we went through the layers and built a fungal decomposition
model according to our own ideas.

• We do not choose a fixed species to study, but use random number to simulate the combination
of species under certain constraints, in view of the fact that there are many species of fungi;

• We consider the main influencing factors and reasonably simplify the model in practice. For
example, when we counted the number of fungi, we chose the equivalent number instead of the
absolute number, which effectively simplified the model;

• We conduct a large number of tests when solving the model, and found that our results have
considerable stability. It can reflect the interaction and decomposition characteristics of fungi;

6.4 Possible Improvements

Some possible improvements are as follows.

• Collect more data through experiments, so as to give more reasonable parameters;

• Consider introducing temperature tolerance to better determine the environmental impact;

• Consider more complex factors for building a more elaborate model.
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The Model of Decomposition of Wood Fiber by Fungi

Fungi often appear as the decomposer in the ecosystem, which plays a very important role in
the energy flow and material circulation in nature, and people’s production and living activities are
inseparable from fungi. Therefore, it is very important to explore the natural properties of fungi, and
solving this problem is helpful to improve the production level and quality of life of human beings.
An important measure of the natural properties of fungi is the decomposition efficiency of fungi,
that is, the total amount of organic matter that can be decomposed by fungi per unit time. In forest
ecosystems, this index is also reflected in the decomposition efficiency of wood fiber. Naturally, the
decomposing efficiency of fungi in an ecosystem is the sum of the decomposing efficiency of all fungi
in that ecosystem.

Studies have shown that the lignocellulosic decomposition efficiency of fungi in a forest ecosys-
tem is directly proportional to both the total number of fungi in the ecosystem and the total mass of
lignocellulosic residues in the ecosystem. Unfortunately, the ratio of lignofiber decomposition effi-
ciency to the product of the above two parameters is not a constant, but a parameter related to many
parameters. The study of this functional relation can be divided into two subproblems. The first is to
study the microcosmic problem of the relationship between the decomposition efficiency of fungi and
the environment, the second is to study the macroscopic problem of the evolution law of the population
size of various fungi in the ecosystem.

(1) The relationship between the decomposition efficiency of fungi and the parameters
With modern detection techniques and computational theories, we can now roughly predict the

decomposition efficiency of a fungus based on several environmental parameters. The empirical study
and data analysis showed that the logarithm of the maximum decomposition efficiency of fungi could be
expressed linearly by the logarithm of its natural growth rate, water tolerance parameters and a specific
constant. It can be seen that the effect of water tolerance parameters on the maximum decomposition
efficiency of fungi is exponential, which is significantly greater than the effect of natural growth rate
on the decomposition efficiency of fungi. This empirical formula is 𝛿 = 6.2538 · 𝛼0.3604 · e0.2468𝛽.

We notice that fungi do not reach their maximum decomposition efficiency all the time, because
the temperature and humidity of the environment will have a certain effect on the natural growth
rate of fungi. In general, each fungus has a set of optimal temperatures and humidity. Under
the optimal conditions determined by this set of parameters, the natural growth rate of fungi is
maximized. According to statistical theory and measured data, we know that the actual optimal
absolute difference of logarithm of fungal natural growth rate can be linearly expressed by the actual
optimal absolute difference of temperature and humidity, and the relationship between them is like this

ln 𝛼′ = ln 𝛼 − 4 ln 2
𝛽 + 1

·
(
0.5138 |𝑇 − 𝑇0 |

𝑇
+ 0.4862 |𝑀 − 𝑀0 |

𝑀

)
.

(2) Evolution of the population size of various fungi in the ecosystem
Let’s start with the case of a single fungus. If there were only one species of fungus in the
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ecosystem, then we would only need to consider the reproduction and intraspecific competition of
the fungus – and as you might guess, this intraspecific competition behavior is well described by a
Logistic growth retardation model that takes into account both factors. As we introduce more fungi
into the ecosystem, things will get complicated and we will have to consider interspecies competition.
At this point, I think you can easily understand the following two facts. First, the inhibition effect
of interspecific competition on population size growth is positively correlated with the product of the
total number of individuals in the two populations; second, the ecosystem does not allow all species
to reach the environmental tolerance under ideal conditions. Based on these two facts, we can draw a
differential equation describing the time-dependent evolution of population size:

d𝑁𝑖
d𝑡

=
𝑁𝑖
𝑆
(𝛼𝑖𝑆 − 𝛿1𝑁1 − 𝛿2𝑁2 − · · · − 𝛿𝑛𝑁𝑛), 1 ≤ 𝑖 ≤ 𝑛.

The numerical solution of this differential equation can effectively predict the evolution law of the
population. Of course, the probabilistic control cellular automata model based on the above principle
can also be used to predict its evolution law. Students who are interested in it can find relevant papers
and conduct simulation. After running a series of simulations, we found that it is very difficult to find
large groups of fungi that can coexist harmoniously in nature. There are obvious dominant species in
the evolution of the fungal community, and these dominant species are replaced with time.

So far, we have found a suitable way to describe a fungus. Based on this principle, we can have
some more in-depth discussion.

(3) The significance of biodiversity
In the simulated calculation, we found that under the condition of the significant increase in

the number of fungal species, without considering the statistical fluctuation, the total decomposition
efficiency of the ecosystem showed an upward trend, and the upward pattern was similar to the
logarithmic curve. This seems to lead us to some conclusions – that biodiversity, for example, not only
increases the stability of ecosystems, but also speeds up the circulation of matter and energy.
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A Appendix: Tools and Software

Paper written and generated via LATEX, free distribution.
Graph generated and calculation using MATLAB R2019b.

B Appendix: The Codes

1 %Random_Celluar_Automata

2 clear;clc;

3 plotbutton=uicontrol('style','pushbutton','string','Run', 'fontsize',12, ...
'position',[250,400,50,20], 'callback', 'run=1;');

4 erasebutton=uicontrol('style','pushbutton','string','Pause','fontsize',12,' ...
position',[350,400,50,20],'callback','freeze=1;');

5 quitbutton=uicontrol('style','pushbutton','string','Quit','fontsize',12,' ...
position',[450,400,50,20],'callback','stop=1;close;');

6 for i=1:5

7 number(i) = uicontrol('style','text','string','0','fontsize',12, ...
'position',[45*i-45,400,50,20]);

8 end

9 n=150;pic=ones(n,n,3)*255;img=image(pic);indi=zeros(n,n,5);

10 colour1=[255;0;0];colour2=[0;0;255];colour3=[0;128;128];colour4=[63;192;0]; ...
colour5=[63;0;192];

11 colour=[colour1,colour2,colour3,colour4,colour5];control=1;sum=ones(5); ...
num=zeros(5);

12 selfrate=[0.15,0.25,0.33,0.45,0.58];condirate=[0.967;0.7;0.58;0.478;0.428]; ...
stop=0;run=0;freeze=0;

13 while stop==0

14 if run==1

15 for i=1:5

16 num(i)=floor(selfrate(i)*sum(i))+1;

17 end

18 for i=1:5
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19 for j=1:num(i)

20 indi(randi(n),randi(n),i)=1;

21 end

22 end

23 for i=1:n

24 for j=1:n

25 tmp=0;

26 for t=1:5

27 tmp=tmp+indi(i,j,t);

28 end

29 if tmp>1

30 randtmp=zeros(5);randrank=1:5;

31 for t=1:5

32 randtmp(t)=indi(i,j,t).*condirate(t).*rand();

33 end

34 for m=2:5

35 if randtmp(1)<randtmp(m)

36 a=[randtmp(1),randrank(1)];

37 randtmp(1)=randtmp(m);randrank(1)=randrank(m);

38 randtmp(m)=a(1); randrank(m)=a(2);

39 end

40 end

41 for t=1:5

42 if randrank(1)==t

43 indi(i,j,t)=1;

44 else

45 indi(i,j,t)=0;

46 end

47 end

48 end

49 end

50 end

51 sum=zeros(5);

52 for t=1:5

53 for i=1:n

54 for j=1:n

55 if indi(i,j,t)==1

56 sum(t)=sum(t)+1;

57 end

58 end

59 end

60 end

61 for i=1:n

62 for j=1:n

63 for t=1:5
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64 if indi(i,j,t)==1

65 for k=1:3

66 pic(i,j,k)=colour(k,t);

67 end

68 break;

69 end

70 end

71 end

72 end

73 figure(1)

74 img=image(pic);

75 control=control+1;controlvector(control)=control;

76 for i=1:5

77 sumtim(control,i)=sum(i);

78 set(number(i),'string',num2str(sum(i)));

79 end

80 end

81 if freeze==1

82 run=0;freeze=0;

83 for i=1:5

84 figure(2)

85 p(i)=plot(controlvector,sumtim(:,i),'linewidth',2);

86 hold on

87 axis on

88 grid on

89 end

90 legend(p,{'Species 1','Species 2','Species 3','Species 4','Species ...
5'});

91 xlabel('time(Num. of Calculation)');ylabel('Size of species');

92 end

93 end
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